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Symmetrical flow past an accelerated circular 
cylinder 

By H. M. BADRt,  S. C. R. D E N N I S  AND S. KOCABIYIKt  
Department of Applied Mathematics, University of Western Ontario, London, Ontario, 

N6A 5B7, Canada 

(Received 17 September 1993 and in revised form 15 August 1995) 

The development of the two-dimensional flow of a viscous incompressible fluid around 
a circular cylinder which suddenly starts to move with the velocity U = UO+ Ult+ U2t2 
is studied. Equations for the flow in terms of the stream function and vorticity in 
boundary-layer coordinates are presented. A perturbation series solution for small 
times is developed. The flow for longer times is computed numerically using an 
accurate implicit time-integration procedure. The numerical method is checked for 
small times by comparison with the results of the analytical solution. Reynolds 
numbers R in the range 200 to lo4 (based on the diameter of the cylinder) are 
considered. One particularly interesting result is that for certain values of U1 and U?; 
at R = 500 and R = lo3 it is found that two co-rotating vortices and three co-rotating 
vortices develop with time in each half of the wake in the two respective cases. 

1. Introduction 
In the present paper we study the two-dimensional flow generated by an infinitely 

long circular cylinder of radius a which moves with velocity U = Uo + Ul t  + U2t2 at 
right angles to its axis. The motion is assumed to be governed by the Navier-Stokes 
equations for an incompressible fluid and the flow is laminar. There are three basic 
parameters in the problem. One is the Reynolds number R, defined by R = 2aUo/v, 
where UO is the initial velocity of the cylinder which is assumed to be non-zero and 
v is the coefficient of kinematic viscosity of the fluid. The other parameters are 
a = aU1/U,2 and 

Much of the work done prior to this work dealt with the case of a uniformly 
accelerated cylinder (UO = U2 = 0) using boundary-layer theory. In this case the 
Reynolds number is based on U1. Solutions have been given for the functional 
coefficients of powers of the time in a series expansion using analytical methods. The 
leading term is valid for all values of the Reynolds number R; subsequent terms in 
the expansion are valid in the case R + co. The first work was by Blasius (1908). 
Three approximations to the initial flow were obtained for this case of infinite R. 
The theory was extended to finite values of R for the case of a uniformly accelerated 

= a2U2/Ui in which the acceleration of the cylinder enters. 
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start by Collins & Dennis (1974). These extensions were based on the full Navier- 
Stokes equations rather than the boundary-layer equations. In their work methods 
of expansion in powers of the time and also methods of numerical integration were 
employed. These methods were a direct extension of those which were used by Collins 
& Dennis (1973ah); both were later applied in the analysis of Badr & Dennis (1985) 
to other problems concerned with the initial (two-dimensional) motion of circular 
cylinders. 

One of the objects of the present paper is to give some of the details of the 
expansion of the solution in powers of the time when the external flow has the 
given form U = UO + Ult  + U2t2. The essential point here is that this expansion 
gives the exact solution for small times which may be used to check the initial 
flow details in numerous cases of interest, especially at high Reynolds numbers, 
where it is difficult to compute the early flow unless boundary-layer coordinates 
are employed. For example, by making U1 = 0 and an appropriate choice of 
Uz, we can obtain the initial motion for the case of an oscillating flow in which 
U = UO cos(xt) - Uo(1 -a2t2/2).  In fact, our expansion procedure may be adapted to 
determine the early-time solutions in many cases of this problem, e.g. high Reynolds 
number perturbations to the boundary-layer solutions of Riley (1969, Stuart (1966), 
Davidson & Riley (1972), Vasantha & Riley (1988). Our methods constitute fairly 
logical developments of the earlier work of Wang (1 965,1968). We shall not, however, 
consider the oscillating case in detail here. This will be the subject of a further 
investigation in which comparisons will be made with the recent numerical work of 
Justesen (1991) and the experimental studies of Williamson (1985) and Tatsuno & 
Bearman (1990). 

We shall also give a numerical treatment of the problem when U = UO + Ult  + U2t2 
which is satisfactory both initially when boundary-layer theory applies, and also 
at later times, when recirculation has started and the boundary layer thickens. 
The numerical method of solution employs boundary-layer variables but without 
making any approximation to the Navier-Stokes equations. It adopts basically 
the same type of solution structure as that used by Badr & Dennis (1985). The 
accuracy of the numerical scheme has been verified by comparing the results with 
those obtained from the analytical solution at small times and the equations are 
integrated to later times using an implicit Crank-Nicolson method. The present 
numerical method can be used to integrate the equations of motion particularly 
well for high Reynolds numbers because of the employment of the boundary-layer 
coordinates. 

The fully numerical method of solution has been carried out for R = 200, 500, 
lo?, lo4 when a = 0 and for p = 0.01, 0.05, 0.1, 0.25. The cases R = 500, a = 0, 
fl = 0.02 and R = lo3, il = 0.05, p = 0.01 have also been considered. In all 
the cases it is found that a pair of secondary vortices is formed at the cylinder 
surface after a certain time, but that these do not grow substantially with time, 
although they are more pronounced when R = lo3. On the other hand, a quite 
new phenomenon occurs for sufficiently large time when R = 500, M = 0, = 0.02 
and R = lo3, a = 0.05, p = 0.01. In the first case each part of the symmetrical 
wake divides into two co-rotating vortices, whereas in the second case each part of 
the symmetrical wake divides into three co-rotating vortices. In view of the fact 
that the vortices are co-rotating, this could possibly indicate instability in the wake, 
although this might be suppressed in the present calculations by the fact that the 
flow is required to remain symmetrical about the centreline, which has been assumed 
throughout. 
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2. Governing equations and method of analysis 
A reference frame moving with the cylinder is adopted. Modified polar coordinates 

(t ,Sj  are used, where < = log(r/a), with the centre of the cylinder as the origin. 
At time t = 0, the cylinder starts to move in the direction 8 = 0 with the velocity 
U = Uo + U,t + U2t2, where t is the time. If VI* and [" are the stream function and 
vorticity associated with the motion, we introduce the dimensionless functions y and 
< defined by the equations 

y' = Uuy.  [" = -U[/a .  

The dimensionless radial and transverse components of velocity (u, v) obtained by 
dividing the corresponding dimensional components by the initial velocity UO of the 
cylinder are then given by 

and the function ( is defined by 

Here yi and i satisfy the equations 

where 7 is defined by z = Uot/a. 
Equations (2.3) and (2.4) are those considered by Collins & Dennis (1973u,h) 

in the case of sudden translation ( U  # 0, U1 = U2 = 0) of a circular cylinder 
without acceleration. Here the acceleration of the fluid enters through the parameters 
LY = aUI/Ut  and f i  = a2U2/Ui in the boundary conditions, which may be stated as 

e - t ~ - + ( 1 + a z + f i r 2 ) s i n 0 ,  e c -  a7& + ( ~ + G I Z + ~ Z ~ ) C O S ~  as < - + m  (2.6) at a8 
The last conditions correspond to an accelerated stream relative to the cylinder at 
large distances from it. The set of conditions (2.5) and (2.6) must be satisfied for all 
7 > 0 and for all 0 such that 0 < 8 < n, and moreover, the flow will be assumed to 
remain symmetrical about the direction of the motion. Then both functions y and [ 
are anti-symmetrical about 8 = 0 and 0 = 7c and, in particular, 

y(<, 8 )  = [(<, 0) = 0 when 0 = 0, 8 = 7c. (2.7) 

In the present analysis the calculations are carried out on the basis of the method 
of solution adopted by Collins & Dennis (1973u,b) in which the functions w and ( 
were expressed in the form of the series 

u 

v?(t ,~,  7) = Cfn(<, z j  sin no, (2.8) 
n= 1 
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( ( t , ~ ,  t) = C gn(t, 7) sin no, (2.9) 
tl=l 

to determine the initial flow in the boundary layer mainly by analytical methods for 
small values of z. The equations governing the functions in (2.8) and (2.9) can be 
obtained by substitution in (2.3) and (2.4). It is found from (2.4) that 

(2.10) 

Equation (2.3) then becomes 

where 

Here j =I m - n I and sgn(m - n) denotes the sign of m - n, with sgn(0) = 0. The set 
of equations (2.10) and (2.11) hold for all positive integer values of n. 

Boundary conditions follow from (2.5) and (2.6). From (2.5) 

(2.13) a f n  
fn = ag = 0 when [ = 0, 

for all n. As a consequence of the condition (2.6) we must also have that, for all n, 

gn(t,t) + 0 as t + (2.14) 

Finally, the conditions (2.6) imply that 

affl af* 
a0 

e-4- - (1 + az + Pt2)6,,,  eCt- -+ (1 + a t  + p ~ ' ) 6 , ~  as + co, (2.15) 

where 6 , ,  is the Kronecker delta symbol defined by 

6 , n  = 1 if m = n, 6 , n  = 0 if rn f n. 

If we multiply (2.10) by ecnt and integrate from 5 = 0 to t = co, we may deduce, 
using (2.13) and (2.15) that 

(2.16) 

where 6 ,1  has the significance in (2.15). It can be shown that the conditions (2.13), 
(2.14) and (2.16) are sufficient to solve the problem, and that, if they are satisfied and 
g,({,t) is assumed to be such that e2tg,(<,t) is bounded for all n as ( --+ co, then 
the flow is automatically adjusted to satisfy the external stream condition (2.6). The 
functions gn((, t) can be verified to satisfy the necessary condition a posteriori. 

Equations (2.10) and (2.11) determine the development of the flow at some time 
after the impulsive start, but in the initial stages of the motion the boundary-layer 
coordinate x can be introduced by the transformation 

4 = kx, k = 2(2~/R)"~. (2.17) 
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This is employed to transform all the appropriate equations together with the scalings 
of variables 

(2.1 8) 
G 
k fn = kF,, g, = 2. 

Equation (2.10) then becomes 

(2.19) 
d2 F, 
-- n2k2F, = e2kxG,, 
dx2 

while equation (2.1 1) becomes 

(2.20) 

where Sl is S, with fn replaced by F,,, g ,  replaced by G, and 4: rcplaced by x. 
The boundary conditions simply become 

(2.21) 3Fn 
'- ax F - - = O  when x=O, 

and 

e(2-n)kx G,(x,z)dx = 2(1 + NT + Pz2)6,,1. (2.22) Lm 
The solution at the start of the motion is found by putting z = k = 0 in (2.19) and 
(2.20), and in the condition (2.22). Equations (2.20) become 

a2G, aG, 
- + 2 ~ -  + 2Gn = 0. 
8x2 ax 

(2.23) 

The solutions of these satisfying (2.22) are 

which yields the expression 

[(x, O,O) = 47t-1/2e-x2 sin 0;  (2.25) 

the corresponding solutions to (2.19) obtained using (2.24) are easily found as 

F, = 2[xerfx - - e-x2)16n,1, (2.26) 

which gives the initial expression for y(x ,  8,O). 
From the initial expressions (2.24) and (2.26) we may now build up a perturbation 

solution in powers of z following Collins & Dennis ( 1 9 7 3 ~ ) .  The expansions for the 
stream function and vorticity can be made in terms of both k and z. First we may 
expand y and c in the form 

(2.27) 

where v m  = ym(x,8,z), iM = Cm(x,8 ,z ) .  Then each yrn,Crn is expanded as a series of 
powers of z in the form 

w = wo +kWi +k2y2 + . . . , < = [ O  + k<i + k252 + . . . , 

m n 
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where each of the coefficients ymn, 5,, consists of combinations of functions of x 
with periodic functions of 0. The process of derivation of these coefficients follows 
very closely the procedures described by Collins & Dennis (19734. The differential 
equations for the functions ymn(x, 0),5,,(x, 0) and the boundary conditions satisfied 
by these functions can easily be found. Each of these functions can be expressed as a 
finite set of Fourier-sine components in the coordinate 0 with coefficients which are 
functions of the variable x. The series (2.27) are thus expressed in periodic terms in 
8 with coefficients depending on x,z and k .  On expansion in powers of T and k and 
equating to zero each coefficient of kmTn, we get the conditions which the Fourier- 
sine components must satisfy. As a result of determining seven composite functions 
lmn(x, 19) in the series (2.28) when a! = 0 and = O( l), we obtain an expression for 
the vorticity of the form 

l ( X ,  0, z) - 500 + Tior + z2i02 + k (510 + T i l l  + T2i12)  + k2 (520 + ar)) 3 (2.29) 

which is valid for small z and large R. For our present purpose we shall only give 
the expression obtained for the surface vorticity. The expression (2.29) obtained by 
analytical means gives sufficient information to check the numerical solutions which 
are obtained by numerical integration of (2.19) and (2.20) subject to the conditions 
(2.21) and (2.22). In particular, we find for the surface vorticity 

((0,8, T )  - (47c-'j2 + k - $n-'/*k2) sin 0 - T [$71:-~/'(371 + 4) 
- -_ ( 1 5 ~  [96 x 2l/* - 771 - 304)] sin 20 + t2 [ ( & z - ~  [1440n2(1 + p )  
-(3402 x 3'12 - 2 1 9 6 ) ~  - 28161 + [1.60170 + P]k)  sin0 

+ ( &7--5'2 [180n2 - (1458 x 31/2 - 1404) 71: + 2561 + 4.92853k) sin 301 , 
(2.30) 

when cc = 0 and f i  = O(1). Some further results derived from these solutions will be 
given subsequently. 

As we mentioned previously, the initial solution given by (2.24) and (2.26) forms 
the starting point of the analytical solution (2.29) for the vorticity in powers of z, and 
it likewise forms the starting point of the numerical solution of (2.19) and (2.20). In 
the initial stages only a very few terms of the series (2.8) and (2.9) are required to 
describe the flow, but more terms become necessary as time-dependent integrations 
proceed. This is exactly analogous to the case of expansion in powers of z, where each 
new power of t introduces higher periodic terms in the expansions (2.8) and (2.9). 
However, the advantage of the present method is that the numerical integrations can 
be carried on long after the series in powers of z ceases to be valid; further, the 
method is not restricted to high values of R. 

3. Numerical integration procedure 
In order to calculate the flow for any Reynolds number and large enough time, 

the numerical method of integration given by Badr & Dennis (1985) may be used. 
The solution is started in the boundary-layer variables by integrating (2.19) and 
(2.20) using (2.24) and (2.26) as initial conditions and (2.21) and (2.22) as boundary 
conditions. An implicit method of integration of Crank-Nicolson type is used, and a 
given approximation is obtained by truncating the series (2.8) and (2.9). This is done 
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by setting to zero all functions F,(x,z) and G,(x,z) for n > no, where no is an integer 
defining the order of truncation. Thus in practice 2no functions are determined from 
(2.19) and (2.20). 

The essential details of the procedure have been given by Badr & Dennis (1985). 
Only a few functions F,(x,z) and G,(x,z) are needed to describe the motion for 
small z in view of the initial structure given by (2.24) and (2.26). More functions are 
added as integration proceeds and the parameter no actually refers to the maximum 
number of terms used in each of the series (2.8) and (2.9) during the integration. 
Checks were made for each R at several typical values of z to ensure that Q was 
large enough. This was done by increasing no and observing that the solution did 
not change appreciably. It is also necessary to use a small time step for small z. 
The reason is that the expansions of Fn(x, z) and G,(x, z) in powers of z depend also 
upon integer powers of k ,  thus all derivatives with respect to T of terms involving 
odd powers of k are eventually singular at z = 0 after a certain stage, provided R is 
finite. The problem does not arise in the boundary-layer case, where k = 0. However, 
when k # 0 care must be taken to minimize the effect of singularities in derivatives 
at z = 0 and the only effective way of dealing with this is to take very small time 
steps so that the effect of higher derivatives tends to be smoothed out by the small 
AT. 

For the cases of finite R considered the integrations were all started by taking 
10 time steps AT = The time step was then increased to A t  = lo-? for the 
next 10 steps and then to AT = for the next 10. Finally AT = 0.025 was 
taken for the rest of the solution. The grid size in the x-direction was taken as 
Ax = 0.05 and the maximum value of x was x , ~  = 8. The values of grid sizes 
were to some extent chosen to be comparable with those used by Badr & Den- 
nis (1985), since these were found to be satisfactory and were checked carefully. 
A few comparable checks on different grids were made at one or two values of 
z during the present calculations. Moreover, the solutions obtained by fully nu- 
merical means are compared with the results obtained using expansions in powers 
of z; these comparisons indicate that the solutions are quite accurate. Finally, 
we may note that the numerical method described may be used to continue the 
solution for increasing z in terms of the physical coordinate ( when the bound- 
ary layer thickens. The same methods may be used to integrate (2.10) and (2.11) 
subject to the boundary conditions in terms of these coordinates. However in the 
present paper only cases for which R 3 200 are presented and it is possible to 
work in terms of the boundary-layer coordinate x over the entire range of z con- 
sidered. 

Since the time step AT near z = 0 is obviously significant we have carried out 
some tests on one of the cases for which detailed results will be presented in the next 
section, namely R = 500, CI = 0, p = 0.02. For the grid size Ax = 0.05 the results of 
varying the time step during the solution near z = 0 was carefully studied, keeping 
Ax = 0.05. Several runs were made with different values of AT and found to be 
completely consistent. For example, with AT = 0.0125, the total drag coefficient CD 
at z = 1.0 was 1.0648 compared with 1.0646 when A t  = 0.05. This is a comparison 
of a global property, of course, but comparisons of solution details were similar. At 
z = 5.0, CD=3.4608 when AT = 0.0125 compared with CD = 3.4607 when Az = 0.05. 
The change in space step tends to be more significant. For example, when z = 0.05, 
CD = 1.0600 at z = 1.0 when Ax = 0.1 compared with CD = 1.0646 when Ax = 0.05. 
However, by careful study of the effect of changes in both AT and Ax, the results 
presented are thought to be reliable. 
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/3 0.01 0.05 0.1 0.25 0.5 
T 0.3203 0.3236 0.3279 0.3426 0.3732 

TABLE 1. Approximations of the time, T, when the recirculation begins for 
the boundary-layer case (k = 0 or R = cc) when M = 0. 

4. Results and comparisons 
One of the interesting physical features of the flow is the determination of the time 

at which the fluid first starts to form a recirculating region at the rear of the cylinder. 
It occurs at a time z = T, say, defined by the condition a[/ad = 0 for x = 0, Q = 0. 
From the expansion (2.29) in powers of k and z we can obtain various approximations 
to T by investigating the roots of the equation 

m=O n=O 

when CI = 0 and p = O(1). Here rno and no correspond to the total number of terms 
taken in the series (2.27) and (2.28) for [(x, 8 , t ) .  The boundary-layer ( R  = 00) case 
corresponds to rno = 0 and successive approximations to T are obtained by taking 
increasing values of no. If we take no = 1 in the boundary-layer case we obtain 

T = 3n:[2(3n + 4)I-l = 0.3510217 (4.2) 

which is in agreement with the Blasius approximation in the case of the impulsively 
started translating circular cylinder. The second approximation (no = 2) gives the 
time T as the positive root of 

1 
---nF2 [4 (45n2 (11 + 8 p )  - n: (194431/2 - 2196) - 1602) - 5121 T 2  
135 

8 -1 -p (3n: + 4)T + 4 = 0. (4.3) 

This yields the value T = 0.319504 when p = 0 which is in agreement with the 
approximation given by Collins & Dennis (1973~) in the case of an impulsively 
started translating circular cylinder. Approximations corresponding to various values 
of p have been calculated and these are shown in table 1. An investigation of the 
variation of T with R and p has been carried out by finding the appropriate root of 
the equation 

LK2 ([180(11+ 8p)7z2 - (7776 x 3l/’ - 6408) n: - 16021 - 2048) T 2  
135 

- ( FTC)”~ [’.-. 3360 (105 (64p + 7008 x 21/2 + 4509) z2 - 1514731.4~~’~ 

+ (379904 x 21/2 + 771120 x 3 l I 2  - 1270928) IT - 141312) T 2  

(4.4) 
1 -- 30 (1440 x 21/2 - 1 1 5 0 ~ ~ ’ )  T - 21 - {n:-’(371. + 4)T + 4 = 0 

incorporating all the terms in (4.1), when rno = 1 and no = 2, which have been 
calculated. The results are shown in table 2. The results of table 2 show that R has a 
stronger influence on the time T when the first recirculation begins at lower j than 
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RIP 0.01 0.05 0.1 
200 0.5952 0.6692 - 

500 0.4172 0.4263 0.4322 
lo3 0.3792 0.3854 0.3396 
lo4 0.3357 0.3396 0.3447 

TABLE 2. The effect of the first two boundary-layer correction terms, on the time, T ,  
when the first recirculation begins for the case CI = 0. 

RIP 0.01 0.05 0.1 
200 0.4468 0.4523 0.4593 
500 0.3948 0.3984 0.4029 
lo3 0.3724 0.3754 0.3791 
lo4 0.3372 0.3392 0.3418 

TABLE 3. Calculated values of the time, T ,  when the recirculation begins from 
the numerical solution for the case CI = 0. 

at higher p in the case CI = 0. It is clear that numerical methods must be used to 
give accurate values for lower values of R. The range of R for which these results are 
valid is not known but some evidence is available from the results of the numerical 
calculations which are given in table 3. 

A dimensionless drag coefficient CD is defined by CD = D / p U 2 a  where D is the 
total drag on the cylinder. It may be expressed as 

in which the first term in the integral gives the friction drag coefficient Cf  and the 
second the pressure drag coefficient C,, where CD = C, + C,. Both of these coefficients 
can be calculated as series in powers of T and k from the present results. It is found, 
for the terms calculated, that 

C~=TC(~RT)- ’ / ‘  [ 4 ~ ~ - ’ / ~ + & n - ~ / ’  ( 2  [360n2(2P+2) -9n ( 1 8 9 ~ 3 ~ ’ ~ - 1 2 2 )  -14081) T~ 

+k - (in-’/2) k2- &f2 (10571’ (128~1~- 7292 x 21/2+4785)+14515208n3’2 

+n (610304 x 2l/’+1533168 x 31/2- 2300144) - 362496) k ~ ~ + 0 ( ~ ~ ) ]  , (4.6) 

71 
C - - [16p~’ + 4n-’/’k + k2 - J--x-~/~ 15120 (80640n’ (a2 - 12 2”’ + 6) 
- 42 

+4354560/?n3/’ - n (430080 x 2‘/’ - 381024 x 31/2 - 345408) 

+315392) .kz2 + O ( T ~ ) ]  (4-7) 

Finally, we may also obtain an exact expression for the pressure coefficient p i :  

This coefficient p i  measures the change in dimensionless pressure over the surface of 
the cylinder and the subscript zero denotes a value at the surface = 0. It may be 
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FIGURE 1. Comparison of the vorticity distribution over the surface of the cylinder at R = lo4, 

N = 0, p = 0.25: -, numerical solution; - - -, analytical solution. 

shown that the expression for p i  found from the second equation of (2.27) using (4.8) is 

1 
22 
~ ( C O S  28 - 1 ) )  T~ - ~ T C - ” ~  (cos 8 + 1 )  k - [(6.018p + 4.591 54) (cos 8 + 1) 

p i  = - [ ~ ( C O S  28 - l ) z  - (168 (COS 8 + 1) + f np3 /2  [TC (7 - 2’’‘ - 60) - 161 

+ (366.69268 + 41.5813) (cos 38 + l)] kz2]  . (4.9) 

These analytical expressions will now be used to check the results of the nu- 
merical integrations at small values of T. A comparison between the results for 
the surface vorticity obtained from the numerical solutions at small values of z 
and obtained from (2.30) when c( = 0 and f i  = 0.25 is given in figure 1. The 
agreement is found to be satisfactory for small enough times. Calculated results 
exhibited in figure 2 for CD obtained from (4.6) and (4.7) again compare satis- 
factorily with the results derived from the numerical procedure described in the 
last section at small values of T. In figure 3, the pressure variation around the 
cylinder surface according to the present numerical calculation at  R = lo4 when 
CI = 0, 8 = 0.25 is compared with analytical result (4.9) at z = 0.1,0.2,0.4 and 
z = 0.6. 

The time development of flow patterns for the cases R = 500, SI = 0, 8 = 0.02 
and R = lo3, SI = 0.05, 8 = 0.01 at values of T over the range z = 1.0 to 18.0 are 
shown in figures 4 and 5. The growth of the length of the vortex pair obtained from 
the numerical solutions is given in figure 6, which shows that with the increase of 
time the vortices are increasing in a roughly linear manner once recirculation has 
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CD 

1.8 
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FIGURF 2. Variation of the drag coefficient C, with 5 at CI = 0, /3 = 0.25: 

z 

-, numerical solution; 0, analytical solution. 

-9.6 ' a 

FIGURE 3.  Comparison of thc variation of the pressure coefficient over the surface of the cylinder 
at R = lo4, 1 = 0, /l = 0.25: -, numerical solution; - - -, analytical solution. 
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FIGURE 4. Instantaneous streamlines of the flow for R = 500, CI = 0, fi = 0.02 at various times: 
(a) 7 = 1.0, ( b )  6.0, ( c )  10.0, ( d )  12.0, ( e )  14.0, c f )  16.0, (g) 18.0. 

(b) 

established itself. Here L(z) is the dimensionless length of the recirculation region 
measured in radii along the downstream axis of symmetry from the rearmost point 
of the cylinder. 

In both cases a pair of secondary vortices appears after a certain time. They 
become more pronounced in the R = lo3 case, but do not seem to grow for later 
times. However, the development of the flow for later times is quite different in the 
two cases. Thus, in the R = SO0 case at z = 10.0 each vortex in the pair breaks 
into two co-rotating vortices, whereas in the R = lo3 case at z = 14.0 each vortex 
breaks into three co-rotating vortices, a phenomenon which does not seem to have 
been observed previously in flows of this kind. The cause of the difference of the 
flow development in the two cases is not clear, but the acceleration of the fluid 
in the external flow becomes much greater at larger times in the R = SO0 case. 



Symmetrical $ow past an accelerated circular cylinder 109 

FIGURE 5. Instantaneous streamlines of the flow for R = lo3, a = 0.05, f i  = 0.01 at various times: 
(a)  T = 1.0, (b)  6.0, (c) 10.0, ( d )  12.0, (e) 14.0, ( f )  16.0, ( g )  18.0. 

In any case the situation of two co-rotating vortices would seem to be potentially 
unstable. 

5 .  Conclusions 
In the present paper we have considered the flow due to an accelerated circular 

cylinder and found analytical expressions which describe the initial flow. These 
expressions are used to check the initial details of a fully numerical study of the 
problem which is extended well beyond the range of applicability of the analytical 
solutions. The numerical work has been continued sufficiently far in time to reveal 
some new and interesting features in the wake, in which the flow breaks down into 
two or three co-rotating vortices, depending upon the Reynolds number. 
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